If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49s^2-14=0
a = 49; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·49·(-14)
Δ = 2744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2744}=\sqrt{196*14}=\sqrt{196}*\sqrt{14}=14\sqrt{14}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{14}}{2*49}=\frac{0-14\sqrt{14}}{98} =-\frac{14\sqrt{14}}{98} =-\frac{\sqrt{14}}{7} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{14}}{2*49}=\frac{0+14\sqrt{14}}{98} =\frac{14\sqrt{14}}{98} =\frac{\sqrt{14}}{7} $
| (2x+7)(3x+-8)=0 | | 5/4x-3=-1/2x+4 | | 29x-1=28 | | 7x2-3x-16=0 | | 0.1x=25(200)+.05x | | (2x+8)-115-118-81=x | | 9a−a−7a=5 | | 2d+83=1312d | | -8=x/16 | | 85-(x+37)-(6x+22)-69=x | | 1/2x+6=3/2(x=6) | | 2k-12=2 | | f23=25 | | 13+2k=-7 | | 3x+15-2×+2=8 | | -7b-3=-7b+6 | | (5x+16)-102-100-92=x | | 3x-7=7x+14 | | 6(1/2x+6)=20 | | -2.6x=39.52 | | h/2-16=-15 | | 3^4(m+11)=21 | | 1982-x=1396 | | 8m+8=8 | | (2x-3)-90-119-90=x | | d2=14 | | 414=1.5b | | -4+20m=-6+5m+2 | | 3q-2=-5 | | 25.20=1.05b | | q/4+4=-1 | | 4{b+7}=56 |